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Me*T~  Research Background

* Deep learning achieved a lot of success in many fields:
Computer Vision, NLP...

* Limitation: most algorithms are based on supervised learning,
so we need lots of labeled samples to train the model



Ne*T Research Background

e Limitation: most algorithms are based on supervised learning,
so we need lots of labeled samples to train the model
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Be*T - Few-shot learning: learn with limited data

e How to learn a model with limited labeled data?

Task: Few-shot Learning
Our focus: few-shot image classification



Few-shot Classification

Using only a few labeled samples to train the classifier
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Shot number: how many samples for one class
Class number: how many classes in the small dataset



Few-shot Classification

Using only a few labeled samples to train the classifier
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NeXT  Literature Review

1. Meta learning based: Design learnable components
Meta-LSTM!, mAMLE, ..

2. Metric learning based: Design distance-based objective functions
MatchingNets'®!, ProtoNets!¥, ...

3. Others (based on augmentation, domain adaptation...):
Data Augmentation GANP! CCN+!...

[1] Ravi et al. "Optimization as a model for few-shot learning." ICLR 2016;

[2] Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
[3] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;

[4] Snell et al. "Prototypical networks for few-shot learning." NIPS 2017;

[5] Antoniou et al. "Data augmentation generative adversarial networks." In ICLR Workshops 2018;
[6] Hsu et al. "Learning to cluster in order to transfer across domains and tasks." ICLR 2018.
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Classic Algorithm: MAML
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meta-train phase

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.
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Learn initialization weights for different tasks using meta-learning.

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.



Classic Algorithm: MAML

meta-test phase

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.



Neg*T Problems of MAML

- Failure on deeper networks
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Neg*T Problems of MAML

- Failure on deeper networks

- Slow convergence speed
For the networks with only 4 conv layers, MAML trains 60k iterations.
It takes more than 30 hours on a NVIDIA V100 GPU.



Ne*T Our Methods

Failure on deeper networks >  Meta-transfer Learning

- Slow convergence speed —> Hard Task Meta Batch



Neg*T Overview of the Methods

- Meta-transfer Learning

Explore the structure of the classifier® , control the degree of freedom

- Hard Task Meta Batch

[1] Shrivastava et al. "Training region-based object detectors with online hard example mining." CVPR 2016.



Neg*T Convolution Networks in MAML

AFllter
4 AConvLayer §\\~\\§
./ \\\\ p 5 N
[T convi
[ [ convz
I SESlEES
,// CONV4
1 &
// \ /
N el

. learnable

fixed




Ng*T Learn the Structure by Many-shot Classification

(" AConv Layer A Pre-trained the network with
many-shot classification task
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Ne*T Meta-transfer Learning

structure the degree of freedom
4 A Conv Layer h 4 The Scaling Weights b
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Ne*T Meta-transfer Learning

4 A Conv Layer A

Applying the scaling weights
for each filter

Parameter number is reduced to
approximately 1/9
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NexT The Pipeline

pre-train meta-train meta-test
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Neg*T Overview of the Methods

- Meta-transfer Learning

- Hard Task Meta Batch

The idea is from hard example mining!!! o
Hard example -> hard task Re

[1] Shrivastava et al. "Training region-based object detectors with online hard example mining." CVPR 2016.



Hard Task Meta Batch

HT Meta Batch

Meta learning iterations >
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Datasets

d  minilmageNet
- Reorganized from ImageNet
- Vinyals et al.! first devised the dataset, and it is widely used in
evaluating few-shot learning methods
- 100 classes (64 meta-train, 16 meta-val, 20 meta-test)

1 Fewshot-CIFAR100 (FC100)
- Reorganized from CIFAR100
- Splitted by Oreshkin et al.?!
- 100 classes (60 meta-train, 20 meta-val 20 meta-test)
- 20 super-classes (12 meta-train, 4 meta-val 4 meta-test)

[1] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;
[2] Oreshkin et al. "TADAM: Task dependent adaptive metric for improved few-shot learning." NIPS 2018.



Evaluation

1 Image Classification Accuracy
- 600 testing tasks randomly sampled from the meta-test set
- 5-class
- 1-shot and 5-shot on minilmageNet
- 1-shot, 5-shot and 10-shot on FC100

* The same evaluation protocol with MAML!!

[1] Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.



Image Classification Accuracy

Methods
MatchingNets [1]

Meta-LSTM [2]

MAML [3]

ProtoNets [4]
TADAM [5]

Ours (MTL + HT)

minilmageNet (5-class)

1-shot

43.4+0.8%

43.6+0.8%

48.7+1.8 %

49.4+08 %

58.5+0.3 %

61.2x1.8 %

5-shot

556.3+0.7 %

60.6 +0.7 %

63.1+0.9 %

68.2+0.7 %

76.7%£0.3 %

75.5+0.8 %

[1] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;

[2] Sachin et al. "Optimization as a model for few-shot learning." ICLR 2017;
[3] Chelsea et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
[4] Snell et al. "Prototypical networks for few-shot learning." NIPS 2017;
[5] Oreshkin et al. "TADAM: Task dependent adaptive metric for improved few-shot learning." NIPS 2018.

FC100 (5-class)

1-shot 5-shot
401+04 % 56.1 +0.4 %
4581219 % 57.0£1.0 %

10-shot

61.6 £0.5 %

63.410.8 %



Ne*T-  Ablation Study

minilmageNet (5-class) FC100 (5-class)
Method 1-shot 5-shot 1-shot 5-shot 10-shot
Train from scratch 453 64.6 38.4 52.6 58.6
Finetune on pre-train model 55.9 71.4 41.6 54.9 61.6
Ours (MTL) 60.2 74.3 43.6 55.4 62.4

Ours (MTL + HT) 61.2 75.5 45.1 57.6 63.4
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Conclusions

% Anovel MTL method that learns to transfer large-scale pre-trained
DNN weights for solving few-shot learning tasks.

% A novel HT meta-batch learning strategy that forces meta-transfer to
“grow faster and stronger through hardship”.

% Extensive experiments on minilmageNet and FC100, and achieving the
state-of-the-art performance.



NexT Paper and Code

This work:

Meta-transfer Learning for Few-shot Learning. In CVPR 20189.

arXiv preprint: https://arxiv.org/pdf/1812.02391.pdf

GitHub repo: https://github.com/y2l/meta-transfer-learning-tensorflow



https://arxiv.org/pdf/1812.02391.pdf
https://github.com/y2l/meta-transfer-learning-tensorflow
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Thank you!
Any questions?

Email: yaoyao.liu@u.nus.edu



