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Motivation

® Few-shot classification is challenging due to the scarcity of labeled training

data, e.g. only one labeled data point per class.
® Semi-supervised learning is a potential approach to tackling this challenge

with low cost.

e Semi-supervised few-shot classification

o how to leverage massive unlabeled data in few-shot learning regimes

o how to overcome the distracting classes mixed in unlabeled data



Contribution

® A novel self-training strategy that prevents the model from drifting due to
label noise and enables robust recursive training.

® A novel meta-learned cherry-picking method that optimizes the weights of
pseudo labels particularly for fast and efficient self-training.

e Extensive experiments on two benchmarks — minilmageNet and
tieredlmageNet, in which our method achieves the top performance.

% Code is available at:

https://qgithub.com/xinzheli1217/
learning-to-self-train



https://github.com/xinzheli1217/learning-to-self-train
https://github.com/xinzheli1217/learning-to-self-train

Problem definition [2]

e Meta-Learning paradigm

e meta-train meta-train
episodes ]

e meta-test

e Episodic data splits

e supportset S

meta-test |

¢ quel’y set Q episodes

e unlabeled set R




Our approach: learning to self-train (LST)

* Meta-learning based approach: learning to self-train (LST)

e Inner loop (base-learning)
e pseudo-labeling the unlabeled data
e cherry-picking the better labeled data

e self-training the base-learner with cherry-picked data

e Quter loop (meta-learning)

e meta gradient descent to optimize the meta-learners



The framework of LST
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The framework of LST

® Inner loop:
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1. Pseudo-labeling

Initialization to few-shot model: pre-training a few-shot model by MTL[3].

Given the support set S, we use the cross-entropy loss to optimize the
task-specific base-learner @ by gradient descent for 7 iters:

Or < 0:—1 — aVy, , L(S;[Pss, 0:-1])

Once Oris trained, we use it to predict the pseudo labels of the unlabeled
data’k.



The framework of LST

® Inner loop:

1. Pseudo-labeling " 2. Cherry-picking N
unlabeled set R
Ipseudo labeled pseudo labeled set R”
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2. Cherry-picking

® Processing the pseudo labels by hard selection and soft weighting.

pseudo labeled : ____________ oY | T ; pseudo labeled
(noisy) pseudo labeled pseudo labeled set RP
(with prediction scores) select (selected) concatenate (selected) (weighted)

060 top-Z per class 00 (with every prototype) 60 @
000 4] soft o —»
- > SWN .
eoo (high prediction scores) e 0 . ‘ Welghts 9 0 .
000 990 prototypes of classes ©00 &

\ I\ J
| |

hard selection soft weighting
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2. Cherry-picking

e Hard selection: picking up the top Z samples per class, according to the
confident scores of pseudo labeled samples.

e Soft weighting: computing the soft weights of selected samples by a
meta-learned soft weighting network (SWN). We refer to RelationNets [5]
and compute a sample’s weight on the c-th class as:

Wie = foyun ( [ﬂbss (2;); 21 J0.u (e ) D f..is the backbone

K meta-learner
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The framework of LST

® Inner loop:

1. Pseudo-labeling 2. Cherry-picking
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3. Self-training

e Self-training base-learner contains two stages:
o re-training with cherry-picked data R? and support setS
o fine-tuning with only support set S

® An iterative procedure can be used in self-training, i.e., recursive training,

to enhance the performance.
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3. Self-training

® Inthe first m steps, 6t is trained

as:

et < ‘915—1 — VOt_l L(S U Rp; [(I)swny (1)587 ‘915—1])

L(SURP; [(I)SU)TMCI)SS)H?S]) = { i

ce (f[(bswn,q)ss,@t](xi)ayi)a if (xia yi) )
ce (Wl @ f[(pswny(pss,et](xz)? yl)) lf (x?,, yz) E Rp

® Intherest T - m steps, Ot is fine-tuned with S as:

et — et—l — Vet—l L<87 [(I)swna (I)S.S) 675—1])
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The framework of LST

e Quter loop with an inner loop:

Inner loop

After fine-tuning steps, using validation

loss (on query set) to update ®ssand &".

After re-training steps, using validation
loss (on query set) to update @swn .

Outer loop | Inputan episode S,Qand R
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pseudo labeled set R”
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Experiments

e Comparing with few-shot learning methods, on minilmagenet dataset

minilmageNet (test)

Few-shot Learning Method Backbone 1.&hét 5 it
: Adv. ResNet, WRN-40 (pre) 552 69.6
R Delta-encoder, [27] VGG-16 (pre) 58.7 73.6
MAML, [3] 4 CONV 48.7101+1.75 63.11 40.92
Meta-LSTM, [21]] 4 CONV 43.56 = 0.84 60.60 = 0.71
Bilevel Programming, ResNet-12° 50.54 £0.85 64.53 + 0.68
T MetaGAN, [41] ResNet-12 52.71+0.64 68.63 % 0.67
: adaResNet, [17] ResNet-12* 56.88 +£0.62 71.94 + 0.57
LEO ) . WRN-28-10 (pre)___61.76 £0.08___77.59 £ 0.12.
I MTL,[30] ______________ResNet-12(pre) 612+18 . 75.5+£ 09
MetaOpt-SVM, [10]° ResNet-12 62.64 +0.61 78.63 + 0.46
LST (Ours) recursive, hard, soft ResNet-12 (pre) 70.1+1.9 78.7 + 0.8

e Compared to the baseline method MTL [3], LST improves the accuracies by 8.9% and 3.2%
respectively for 1-shot and 5-shot, which proves the efficiency of LST using unlabeled data.

16



Experiments

e Comparing with few-shot learning methods, on tieredimageNet dataset

tieredlmageNet (test)

Few-shot Learning Method Backbone ;
1-shot 5-shot
MAML, [3] (by [13]) ResNet-12 51.67+1.81 70.30-+0.08
Gradiont descenrLEQ:I2TL_~ WRN-28-10(pre) 66334 0.05 8144 % 0.09
| | MTL, [32] (byws) ResNet-12 (pre) 656+ 1.8  78.6+0.9
MetaOpt-SVM, [10]' ResNet-12 65.99 +0.72 81.56 + 0.53
LST (Ours) recursive, hard, soft ResNet-12 (pre) THL 4 1.6 85.2 1+ 0.8

e Compared to the baseline method MTL [3], LST improves the results by 12.1% and 6.6%
respectively for 1-shot and 5-shot.
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Experiments

e Comparing with semi-supervised few-shot learning methods on two datasets

mini tiered mini w/D tiered w/D
1(shot) 5 1 5 | 5 1 5
fully supervised (upper bound) 80.4 83.3 86.5 88.7 - - - -
no selection 59.7 192 67.4 81.1 544 73.3 66.1 794
no meta  hard 63.0 76.3 69.8 81.5 616, 753 68.8 81.1
recursive,hard 64.6 712 2.1 824 612 157 68.3 8l1.1
hard (®...60") 64.1 76.9 747 83.2 629 754 73.4 825
soft o ___._...628 159 73.1 8.8 . 61.1 74.6 721 817 .
meta  hard, sofi 65.0 77.8 754 834 63,4 6.2 741 829 i
' recursive,hard,soft 70.1 78.7 717 852 64.1 774 73.5 834!
\mixing hard,soft 662 779 . 756 846 645 765 736 838!
Masked Soft k-Means with MTL 62.1 73.6 68.6 81.0 61.0 72.0 66.9 80.2
TPN with MTL 62.7 74.2 12.1 833 613 724 71.5: 82.7
Masked Soft k-Means [24] 50.4 64.4 524 699 490 63.0 51.4 69.1
TPN [13] 52.8 66.4 557 71.0 504 649 53.5 699

w/D means using unlabeled data from 3 distracting classes.
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Experiments

® The effect of the number of re-training steps m:

minilmagenet 1-shot tieredlmagenet 1-shot
=
2 0.68 5 0.76
% 17
& —m=2 —m=20 20.74
% 0.66| —m=5 —m=40| g
= —m=10 £0.72

| 10 20 30 40 1 10 20 30 40
base-learning iterations base-learning iterations

e Too many re-training steps, e.g. m=40, may lead to drifting problems and cause side effects
on performance.



Experiments

e The effect of the number of distracting classes (1~7):

minilmagenet 1-shot tieredlmagenet 1-shot
5 ' —LST: m=l'0. Z=20 30.76 i ' '
< 0.72 —LST: m=10, Z=5 <
= —LST: m=2, Z=20 5
9 0.68 —Soft k-Means with MTL/1 <
= —TPN with MTL = 0.70
20.64} 8
[P] L D]
Sl \ £0.64 | | ‘
1 3 S 7 | 3 5 74
the number of distracting classes the number of distracting classes

® LST achieves the top performance, especially more than 2% higher than TPN in the hardest case
with 7 distracting classes.

e Among different settings, LST with less re-training steps, i.e., a smaller m value, works better for
reducing the effect from a larger number of distracting classes.
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