Learning to Self-Train for Semi-Supervised Few-Shot Classification

Xinzhe Li, Qianru Sun, Yaoyao Liu Shibao Zheng, Qin Zhou, Tat-Seng Chua, Bernt Schiele

{\langle liuyaoyao@tju.edu.cn \quad qianrusun@smu.edu.sg \liuyaoyao@tju.edu.cn \quad xining.zq@alibaba-inc.com \quad chuats@comp.nus.edu.sg \quad \quad qsun, schiele \rangle @mpi-inf.mpg.de

Motivation

- Few-shot classification is challenging due to the scarcity of labeled training data, e.g. only one labeled data point per class.
- Semi-supervised learning is a potential approach to tackling this challenge with low cost.

Semi-supervised few-shot classification

- how to leverage massive unlabeled data in few-shot learning regimes
- how to overcome the distracting classes mixed in unlabeled data

Contribution

- A novel self-training strategy that prevents the model from drifting due to label noise and enables robust recursive training.
- A novel meta-learned cherry-picking method that optimizes the weights of pseudo labels particularly for fast and efficient self-training.
- Extensive experiments on two benchmarks minilmageNet and tieredImageNet, in which our method achieves the top performance.

Code is available at:

https://github.com/xinzheli1217/ learning-to-self-train

Problem definition [2]

- Meta-Learning paradigm
 - meta-train
 - meta-test
- Episodic data splits
 - ullet support set ${\mathcal S}$
 - query set Q
 - unlabeled set R.

Our approach: learning to self-train (LST)

- Meta-learning based approach: learning to self-train (LST)
- Inner loop (base-learning)
 - pseudo-labeling the unlabeled data
 - cherry-picking the better labeled data
 - self-training the base-learner with cherry-picked data
- Outer loop (meta-learning)
 - meta gradient descent to optimize the meta-learners

• Inner loop:

• Inner loop:

1. Pseudo-labeling

- Initialization to few-shot model: pre-training a few-shot model by MTL[3].
- Given the support set S, we use the cross-entropy loss to optimize the task-specific base-learner θ by gradient descent for T iters:

$$\theta_t \leftarrow \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L(\mathcal{S}; [\Phi_{ss}, \theta_{t-1}])$$

Once θ_T is trained, we use it to predict the pseudo labels of the unlabeled data \mathcal{R} .

Inner loop:

2. Cherry-picking

Processing the pseudo labels by hard selection and soft weighting.

2. Cherry-picking

- Hard selection: picking up the top Z samples per class, according to the confident scores of pseudo labeled samples.
- Soft weighting: computing the soft weights of selected samples by a meta-learned soft weighting network (SWN). We refer to RelationNets [5] and compute a sample's weight on the c-th class as:

$$w_{i,c} = f_{\Phi_{swn}}\Big(\Big[f_{\Phi_{ss}}(x_i); rac{\sum_k f_{\Phi_{ss}}(x_{c,k})}{K}\Big]\Big)$$
 $f_{\Phi_{ss}}$ is the backbone meta-learner

• Inner loop:

3. Self-training

- Self-training base-learner contains two stages:
 - \circ re-training with cherry-picked data \mathcal{R}^p and support set \mathcal{S}
 - \circ **fine-tuning** with only support set \mathcal{S}
- An <u>iterative procedure</u> can be used in self-training, i.e., recursive training, to enhance the performance.

3. Self-training

• In the first m steps, θt is trained as:

$$\theta_t \leftarrow \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L(\mathcal{S} \cup \mathcal{R}^p; [\Phi_{swn}, \Phi_{ss}, \theta_{t-1}])$$

$$L(\mathcal{S} \cup \mathcal{R}^p; [\Phi_{swn}, \Phi_{ss}, \theta_t]) = \begin{cases} L_{ce}(f_{[\Phi_{swn}, \Phi_{ss}, \theta_t]}(x_i), y_i), & \text{if } (x_i, y_i) \in \mathcal{S} \\ L_{ce}(\mathbf{w}_i \odot f_{[\Phi_{swn}, \Phi_{ss}, \theta_t]}(x_i), y_i), & \text{if } (x_i, y_i) \in \mathcal{R}^p \end{cases}$$

• In the rest T - m steps, θt is fine-tuned with S as:

$$\theta_t \leftarrow \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L(\mathcal{S}; [\Phi_{swn}, \Phi_{ss}, \theta_{t-1}])$$

Outer loop with an inner loop:

After fine-tuning steps, using validation loss (on query set) to update Φ_{ss} and θ' .

After re-training steps, using validation loss (on query set) to update Φ_{swn} .

Comparing with few-shot learning methods, on minilmagenet dataset

Few-shot I	Learning Method	Backbone	miniImageNet (test)		
Senger Street, Contract Operator (Lincolonia de la compresión de la compre	1-shot	5-shot	
D-4	Adv. ResNet, [13]	WRN-40 (pre)	55.2	69.6	
Data augmentation	Delta-encoder, [27]	VGG-16 (pre)	58.7	73.6	
	MAML, [3]	4 CONV	48.70 ± 1.75	63.11 ± 0.92	
	Meta-LSTM, [21]	4 CONV	43.56 ± 0.84	60.60 ± 0.71	
	Bilevel Programming, [5]	ResNet-12 ^{\dightarrow}	50.54 ± 0.85	64.53 ± 0.68	
Gradient descent	MetaGAN, [41]	ResNet-12	52.71 ± 0.64	68.63 ± 0.67	
Graateni aesteni	adaResNet, [17]	ResNet-12 [‡]	56.88 ± 0.62	71.94 ± 0.57	
	LEO, [25]	WRN-28-10 (pre)	61.76 ± 0.08	77.59 ± 0.12	
	MTL, [30]	ResNet-12 (pre)	61.2 ± 1.8	75.5 ± 0.9	
	MetaOpt-SVM, [10] [†]	ResNet-12	62.64 ± 0.61	78.63 ± 0.46	
LST (Ours)	recursive, hard, soft	ResNet-12 (pre)	70.1 \pm 1.9	78.7 \pm 0.8	

Compared to the baseline method MTL [3], LST improves the accuracies by 8.9% and 3.2% respectively for 1-shot and 5-shot, which proves the efficiency of LST using unlabeled data.

• Comparing with few-shot learning methods, on tieredImageNet dataset

Fow shot	Lagraina Mathad	Backbone	tieredImageNet (test)		
Few-shot Learning Method		Dackbolle	1-shot	5-shot	
Gradient descent	MAML, [3] (by [13])	ResNet-12	51.67 ± 1.81	70.30 ± 0.08	
	LEO, [27]	WRN-28-10 (pre)	66.33 ± 0.05	81.44 ± 0.09	
	MTL, [32] (by us)	ResNet-12 (pre)	65.6 ± 1.8	78.6 ± 0.9	
	MetaOpt-SVM, [10] [†]	ResNet-12	65.99 ± 0.72	81.56 ± 0.53	
LST (Ours)	recursive, hard, soft	ResNet-12 (pre)	77.7 \pm 1.6	85.2 ± 0.8	

• Compared to the baseline method MTL [3], LST improves the results by 12.1% and 6.6% respectively for 1-shot and 5-shot.

Comparing with semi-supervised few-shot learning methods on two datasets

		mini		tiered		mini w/ \mathcal{D}		tiered w/ \mathcal{D}	
		1(shot)	5	1	5	1	5	1	5
fully supervised (upper bound)		80.4	83.3	86.5	88.7	72	12	62	NEC.
no meta	no selection	59.7	75.2	67.4	81.1	54.4	73.3	66.1	79.4
	hard	63.0	76.3	69.8	81.5	61.6	75.3	68.8	81.1
	recursive,hard	64.6	77.2	72.1	82.4	61.2	75.7	68.3	81.1
meta	hard (Φ_{ss}, θ')	64.1	76.9	74.7	83.2	62.9	75.4	73.4	82.5
	soft	62.8	75.9	73.1	82.8	61.1	74.6	72.1	81.7
	hard,soft	65.0	77.8	75.4	83.4	63.7	76.2	74.1	82.9
	recursive,hard,soft	70.1	78.7	77.7	85.2	64.1	77.4	73.5	83.4
	mixing,hard,soft	66.2	77.9	75.6	84.6	64.5	76.5	73.6	83.8
Masked Soft k-Means with MTL		62.1	73.6	68.6	81.0	61.0	72.0	66.9	80.2
TPN with MTL		62.7	74.2	72.1	83.3	61.3	72.4	71.5	82.7
Masked Soft k-Means [24]		50.4	64.4	52.4	69.9	49.0	63.0	51.4	69.1
TPN [13]		52.8	66.4	55.7	71.0	50.4	64.9	53.5	69.9

Three LST models

• The effect of the number of re-training steps *m*:

• Too many re-training steps, e.g. m=40, may lead to drifting problems and cause side effects on performance.

• The effect of the number of distracting classes (1~7):

- LST achieves the top performance, especially more than 2% higher than TPN in the hardest case with 7 distracting classes.
- Among different settings, LST with less re-training steps, i.e., a smaller m value, works better for reducing the effect from a larger number of distracting classes.

References

- [1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *ICML*, 2017.
- [2] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised few-shot classification. In *ICLR*, 2018.
- [3] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot learning. In *CVPR*, 2019.
- [4] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching networks for one shot learning. In *NIPS*, 2016.
- [5] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales. Learning to compare: relation network for few-shot learning. In *CVPR*, 2018.