Learning to Self-Train for
Semi-Supervised Few-Shot Classification

Xinzhe Li, Qianru Sun, Yaoyao Liu
Shibao Zheng, Qin Zhou, Tat-Seng Chua, Bernt Schiele

{Ixz1217, sbzh}@sjtu.edu.cn gianrusun@smu.edu.sg liuyaoyao@tju.edu.cn
xining.zg@alibaba-inc.com chuats@comp.nus.edu.sg {gsun, schiele}@mpi-inf.mpg.de

WY PEy ‘
s %

Tianjin University

% 2 SINGAPORE MANAGEMENT
agone s> SHANGHAI JIAO TONG UNIVERSITY UNI

@) X FXILY K SMU

Ll ERNUS i
et LN O L LR

. Nationa | Universit y
Alibaba Group

of Singapore

mailto:lxz1217@sjtu.edu.cn
mailto:sbzh@sjtu.edu.cn
mailto:lxz1217@sjtu.edu.cn
mailto:qianrusun@smu.edu.sg
mailto:liuyaoyao@tju.edu.cn
mailto:xining.zq@alibaba-inc.com
mailto:chuats@comp.nus.edu.sg
mailto:schiele@mpi-inf.mpg.de

Motivation

® Few-shot classification is challenging due to the scarcity of labeled training

data, e.g. only one labeled data point per class.
® Semi-supervised learning is a potential approach to tackling this challenge

with low cost.

e Semi-supervised few-shot classification

o how to leverage massive unlabeled data in few-shot learning regimes

o how to overcome the distracting classes mixed in unlabeled data

Contribution

® A novel self-training strategy that prevents the model from drifting due to
label noise and enables robust recursive training.

® A novel meta-learned cherry-picking method that optimizes the weights of
pseudo labels particularly for fast and efficient self-training.

e Extensive experiments on two benchmarks — minilmageNet and
tieredlmageNet, in which our method achieves the top performance.

% Code is available at:

https://qgithub.com/xinzheli1217/
learning-to-self-train

https://github.com/xinzheli1217/learning-to-self-train
https://github.com/xinzheli1217/learning-to-self-train

Problem definition [2]

e Meta-Learning paradigm

e meta-train meta-train
episodes]

e meta-test

e Episodic data splits

e supportset S

meta-test |

¢ quel’y set Q episodes

e unlabeled set R

Our approach: learning to self-train (LST)

* Meta-learning based approach: learning to self-train (LST)

e Inner loop (base-learning)
e pseudo-labeling the unlabeled data
e cherry-picking the better labeled data

e self-training the base-learner with cherry-picked data

e Quter loop (meta-learning)

e meta gradient descent to optimize the meta-learners

The framework of LST

® Inner loop:

1. Pseudo-labeling 2. Cherry-picking
unlabeled set R
pseudo labeled pseudo labeled set R”
“UP.P(:*.C‘ N (noisy) (selected — weighted)
e 0@ few-shot ::: hard selection :‘ 4
initialization [———%] — > 000 o o o
training model | predicting 000 soft weighting 000 @

3. Self-training PSf:UdOt %’fled Val./Test
S€
O ® support set S s
support set
(3 414 o0 meoill

o @ re-trained 1ol J fine-tuned
initialization o >) e)

re-training mode fine-tuning mode val. or test

accuracy

The framework of LST

® Inner loop:

— e e R R R e e e ey,

l’1. Pseudo-labeling N 2. Cherry-picking
unlabeled set R
: pseudo labeled pseudo labeled set R”
: SUI:O; s.el S | (noisy) (selected — weighted)
1 8 e | 888 iuniscccion _ §O 09
I | initialization [——— model —— > 200 o o o
;o oo —
l\ training predzctmgl OO soft weighting Y @
N o o o o o e o e e e e e e e o e e o T
3. Self-training PSﬂUd‘; %’f‘ed Val./Test
S€
OO support set S s
" ..‘ support set ‘
® o000 : 000 i loss
o @ re-trained 1ol J fine-tuned
initialization o > el = Tl
re-training mode fine-tuning mode val. or test accuracy

1. Pseudo-labeling

Initialization to few-shot model: pre-training a few-shot model by MTL[3].

Given the support set S, we use the cross-entropy loss to optimize the
task-specific base-learner @ by gradient descent for 7 iters:

Or < 0:—1 — aVy, , L(S;[Pss, 0:-1])

Once Oris trained, we use it to predict the pseudo labels of the unlabeled
data’k.

The framework of LST

® Inner loop:

1. Pseudo-labeling " 2. Cherry-picking N
unlabeled set R
Ipseudo labeled pseudo labeled set R”
support set S | (noisy) (selected — weighted)
:z: i h | b 444 hard selection oo e
initialization [———#{ ‘W10 1> SO reYe—0"0
. . mo e . - - -
training predzctmgl\ OO soft weighting Y @
N o o e o e e e e e e e e e e e e e = e
3. Self-training lDSf:UdOt %’f‘ed Val./Test
S€
OO support set S s
" ..‘ support set ‘
® o000 : 000 qaiscli loss
initialization @ ,| re-trained 1ol J ,| fine-tuned
re-training model fine-tuning model val. or test

accuracy

2. Cherry-picking

® Processing the pseudo labels by hard selection and soft weighting.

pseudo labeled : ____________ oY | T ; pseudo labeled
(noisy) pseudo labeled pseudo labeled set RP
(with prediction scores) select (selected) concatenate (selected) (weighted)

060 top-Z per class 00 (with every prototype) 60 @
000 4] soft o —»
- > SWN .
eoo (high prediction scores) e 0 . ‘ Welghts 9 0 .
000 990 prototypes of classes ©00 &

\ I\ J
| |

hard selection soft weighting

10

2. Cherry-picking

e Hard selection: picking up the top Z samples per class, according to the
confident scores of pseudo labeled samples.

e Soft weighting: computing the soft weights of selected samples by a
meta-learned soft weighting network (SWN). We refer to RelationNets [5]
and compute a sample’s weight on the c-th class as:

Wie = foyun ([ﬂbss (2;); 21 J0.u (e) D f..is the backbone

K meta-learner

11

The framework of LST

® Inner loop:

1. Pseudo-labeling 2. Cherry-picking
unlabeled set R
pseudo labeled pseudo labeled set R”
Sul:‘);% N (noisy) (selected — weighted)
e 0@ few-shot ::: hard selection :‘ L L
initialization [———%] — > 000 o o o
training model | predicting 000 soft weighting 000 @

/3. Self-training PSﬂUd‘; %’f‘ed Val./Test
I 56 I
| OO support set S - I
| " ..‘ support set | i
I o o000 : L4 24 | EEe e loss
| — o re-trained 208 fine-tuned
| initialization S - ndel - > el e
¥ . . or
X re-training fine-tuning al. ortes accuracy

3. Self-training

e Self-training base-learner contains two stages:
o re-training with cherry-picked data R? and support setS
o fine-tuning with only support set S

® An iterative procedure can be used in self-training, i.e., recursive training,

to enhance the performance.

13

3. Self-training

® Inthe first m steps, 6t is trained

as:

et < ‘915—1 — VOt_l L(S U Rp; [(I)swny (1)587 ‘915—1])

L(SURP; [(I)SU)TMCI)SS)H?S]) = { i

ce (f[(bswn,q)ss,@t](xi)ayi)a if (xia yi))
ce (Wl @ f[(pswny(pss,et](xz)? yl)) lf (x?,, yz) E Rp

® Intherest T - m steps, Ot is fine-tuned with S as:

et — et—l — Vet—l L<87 [(I)swna (I)S.S) 675—1])

14

The framework of LST

e Quter loop with an inner loop:

Inner loop

After fine-tuning steps, using validation

loss (on query set) to update ®ssand &".

After re-training steps, using validation
loss (on query set) to update @swn .

Outer loop | Inputan episode S,Qand R

[P, 0|

pseudo labeled set R”
t

[(I)S‘wn.) Qs,s, 9’]4——

unlabeled set R

support set S Re-train | 0 oy
step 1

Om 1
¢ —

Re-train
step m
(I)

7" swn)

query set Q

f[q).aes ;9777, ((I)swn)]

l

loss of ®,n,

Fine-tune
step m+1

Fine-tune
step T
([®

88 9]

query set Q —=fla, ;07 ([®.,,0'])]

|

loss of [® s, 8']

deploy

Y

meta update|®un, Py, 0']

A

15

Experiments

e Comparing with few-shot learning methods, on minilmagenet dataset

minilmageNet (test)

Few-shot Learning Method Backbone 1.&hét 5 it
: Adv. ResNet, WRN-40 (pre) 552 69.6
R Delta-encoder, [27] VGG-16 (pre) 58.7 73.6
MAML, [3] 4 CONV 48.7101+1.75 63.11 40.92
Meta-LSTM, [21]] 4 CONV 43.56 = 0.84 60.60 = 0.71
Bilevel Programming, ResNet-12° 50.54 £0.85 64.53 + 0.68
T MetaGAN, [41] ResNet-12 52.71+0.64 68.63 % 0.67
: adaResNet, [17] ResNet-12* 56.88 +£0.62 71.94 + 0.57
LEO) . WRN-28-10 (pre)___61.76 £0.08___77.59 £ 0.12.
I MTL,[30] ______________ResNet-12(pre) 612+18 . 75.5+£ 09
MetaOpt-SVM, [10]° ResNet-12 62.64 +0.61 78.63 + 0.46
LST (Ours) recursive, hard, soft ResNet-12 (pre) 70.1+1.9 78.7 + 0.8

e Compared to the baseline method MTL [3], LST improves the accuracies by 8.9% and 3.2%
respectively for 1-shot and 5-shot, which proves the efficiency of LST using unlabeled data.

16

Experiments

e Comparing with few-shot learning methods, on tieredimageNet dataset

tieredlmageNet (test)

Few-shot Learning Method Backbone ;
1-shot 5-shot
MAML, [3] (by [13]) ResNet-12 51.67+1.81 70.30-+0.08
Gradiont descenrLEQ:I2TL_~ WRN-28-10(pre) 66334 0.05 8144 % 0.09
| | MTL, [32] (byws) ResNet-12 (pre) 656+ 1.8 78.6+0.9
MetaOpt-SVM, [10]' ResNet-12 65.99 +0.72 81.56 + 0.53
LST (Ours) recursive, hard, soft ResNet-12 (pre) THL 4 1.6 85.2 1+ 0.8

e Compared to the baseline method MTL [3], LST improves the results by 12.1% and 6.6%
respectively for 1-shot and 5-shot.

17

Experiments

e Comparing with semi-supervised few-shot learning methods on two datasets

mini tiered mini w/D tiered w/D
1(shot) 5 1 5 | 5 1 5
fully supervised (upper bound) 80.4 83.3 86.5 88.7 - - - -
no selection 59.7 192 67.4 81.1 544 73.3 66.1 794
no meta hard 63.0 76.3 69.8 81.5 616, 753 68.8 81.1
recursive,hard 64.6 712 2.1 824 612 157 68.3 8l1.1
hard (®...60") 64.1 76.9 747 83.2 629 754 73.4 825
soft o ___._...628 159 73.1 8.8 . 61.1 74.6 721 817 .
meta hard, sofi 65.0 77.8 754 834 63,4 6.2 741 829 i
' recursive,hard,soft 70.1 78.7 717 852 64.1 774 73.5 834!
\mixing hard,soft 662 779 . 756 846 645 765 736 838!
Masked Soft k-Means with MTL 62.1 73.6 68.6 81.0 61.0 72.0 66.9 80.2
TPN with MTL 62.7 74.2 12.1 833 613 724 71.5: 82.7
Masked Soft k-Means [24] 50.4 64.4 524 699 490 63.0 51.4 69.1
TPN [13] 52.8 66.4 557 71.0 504 649 53.5 699

w/D means using unlabeled data from 3 distracting classes.

18

Experiments

® The effect of the number of re-training steps m:

minilmagenet 1-shot tieredlmagenet 1-shot
=
2 0.68 5 0.76
% 17
& —m=2 —m=20 20.74
% 0.66| —m=5 —m=40| g
= —m=10 £0.72

| 10 20 30 40 1 10 20 30 40
base-learning iterations base-learning iterations

e Too many re-training steps, e.g. m=40, may lead to drifting problems and cause side effects
on performance.

Experiments

e The effect of the number of distracting classes (1~7):

minilmagenet 1-shot tieredlmagenet 1-shot
5 ' —LST: m=l'0. Z=20 30.76 i ' '
< 0.72 —LST: m=10, Z=5 <
= —LST: m=2, Z=20 5
9 0.68 —Soft k-Means with MTL/1 <
= —TPN with MTL = 0.70
20.64} 8
[P] L D]
Sl \ £0.64 | | ‘
1 3 S 7 | 3 5 74
the number of distracting classes the number of distracting classes

® LST achieves the top performance, especially more than 2% higher than TPN in the hardest case
with 7 distracting classes.

e Among different settings, LST with less re-training steps, i.e., a smaller m value, works better for
reducing the effect from a larger number of distracting classes.

20

References

[1]

[2]

3]

[4]

[5]

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B.
Tenenbaum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised
few-shot classification. In ICLR, 2018.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for
few-shot learning. In CVPR, 2019.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In NIPS, 2016.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to compare: relation network for few-shot learning. In CVPR, 2018.

21

