
max planck institut informatik

Task & Motivation & Contributions

- Few-shot classification (FSC) is challenging due to the scarcity of labeled training data, *e.g.* only one labeled image per class.
- One solution is meta-learning that transfers experiences learned from similar tasks to the target task [1].
- Another solution is semi-supervised learning that additionally use unlabeled data in training [4].
- In our work, we combine these two solutions and achieve the top performance, *e.g.* 70.1% on miniImageNet 5-way 1-shot setting.

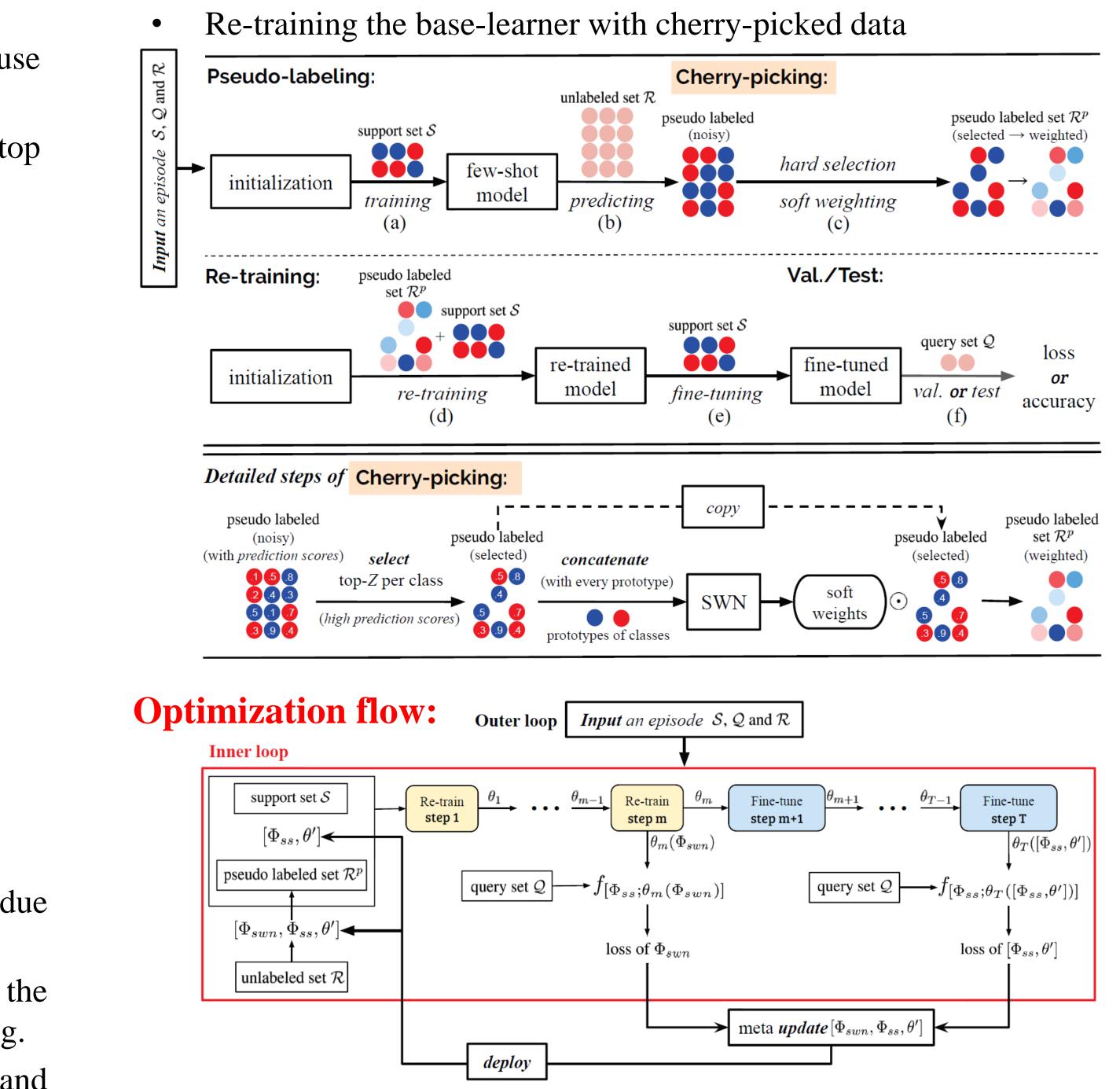
Semi-supervised few-shot classification (SSFSC)

- A novel self-training strategy that prevents the model from drifting due to label noise and enables robust recursive training.
- A novel meta-learned cherry-picking method that optimizes the weights of pseudo labels particularly for fast and efficient self-training.
- Extensive experiments on two benchmarks --- miniImageNet and tieredImageNet, on which our method achieves the top performance.

Learning to Self-Train for Semi-Supervised Few-Shot Classification

Xinzhe Li¹ Qianru Sun^{2,6} Yaoyao Liu³ Shibao Zheng¹ Qin Zhou⁴ Tat-Seng Chua⁵ Bernt Schiele⁶

¹Shanghai Jiao Tong University ²Singapore Management University ³Tianjin University ⁴Alibaba ⁵National University of Singapore ⁶MPI for Informatics


Framework & Optimization flow

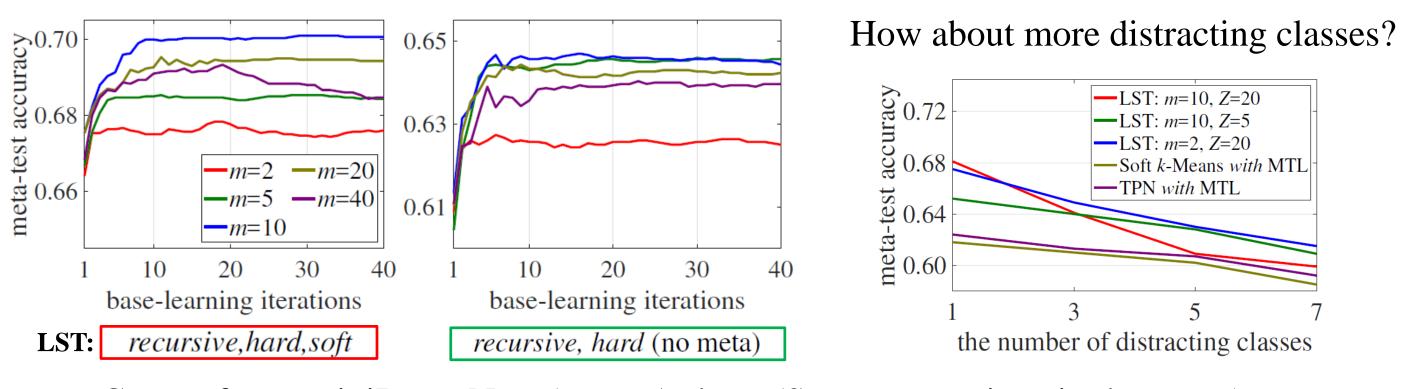
 \bullet

Self-Training (inner-loop; base-learning):

Pseudo-labeling the unlabeled data

- Cherry-picking the better pseudo-labeled data

Learning to Self-Train (outer-loop; meta-learning): meta updates!



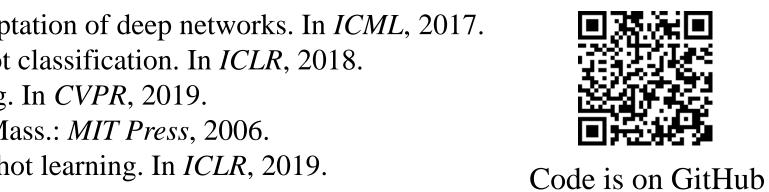
Experiment results on ImageNet-based benchmarks

Classification accuracies (%) in ablative settings (middle blocks), compared to the related SSFSC works (bottom block) with same backbone --- MTL [3]. "fully supervised": using the labels of unlabeled data. "w/D": adding unlabeled data from three distracting classes that are excluded in the support set [2, 5].

	miniImageNet		tieredImageNet		mini w/D		tiered w/D	
	1(shot)	5	1	5	1	5	1	5
fully supervised (upper bound)	80.4	83.3	86.5	88.7	-	-	-	-
no selection	59.7	75.2	67.4	81.1	54.4	73.3	66.1	79.4
no meta hard	63.0	76.3	69.8	81.5	61.6	75.3	68.8	81.1
recursive,hard	64.6	77.2	72.1	82.4	61.2	75.7	68.3	81.1
hard (Φ_{ss}, θ')	64.1	76.9	74.7	83.2	62.9	75.4	73.4	82.5
soft	62.8	75.9	73.1	82.8	61.1	74.6	72.1	81.7
meta <i>hard, soft</i>	65.0	77.8	75.4	83.4	63.7	76.2	74.1	82.9
recursive,hard,soft	70.1	78.7	77.7	85.2	64.1	77.4	73.5	83.4
mixing,hard,soft	66.2	77.9	75.6	84.6	64.5	76.5	73.6	83.8
Masked Soft k-Means with MTL	62.1	73.6	68.6	81.0	61.0	72.0	66.9	80.2
TPN with MTL	62.7	74.2	72.1	83.3	61.3	72.4	71.5	82.7
Masked Soft k-Means [2]	50.4	64.4	52.4	69.9	49.0	63.0	51.4	69.1
TPN [5]	52.8	66.4	55.7	71.0	50.4	64.9	53.5	69.9

Are the meta-learned *soft* weights of pseudo labels useful?

Curves from: miniImageNet, 5-way, 1-shot. (See more settings in the paper)


References

[1] C. Finn et al. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017.

[2] M. Ren et al. Meta-learning for semi-supervised few-shot classification. In ICLR, 2018.

- [3] Q. Sun et al. Meta-transfer learning for few-shot learning. In CVPR, 2019.
- [4] C. Olivier et al. Semi-supervised learning. Cambridge, Mass.: MIT Press, 2006.
- [5] Y. Liu et al. Transductive propagation network for few-shot learning. In ICLR, 2019.

