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Background



Motivation

Thousands of new users and items everyday

Update the model with incremental data

(Images from Internet)

Limited memory 

Taking too long time to retrain the model 
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Related Learning Methods

Transfer learning Multi-task 
learning

Multi-task
incremental 
learning

Multi-class 
incremental 
learning

Target task(s) Single Multiple Multiple Single

Source task(s) Multiple Multiple Multiple Single

Data arrival Constantly / Once Once Constantly Constantly



Challenges

DNN
classifier

Feature 
extractor

FC classifier

1. Catastrophic Forgetting
Model bias on the latest class group

2. FC classifier is not extendable 
10 classes -> 20 classes 

3. Memory resources may be limited
Not able to retain all previous samples
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- To improve the feature extractor

LwF[1], ......

Literature Review 

- To improve the classifier:

iCaRL[4], BiC[3], ......

Reference
[1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
[2] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018;
[3] Wu, Yue, et al. "Large scale incremental learning."  CVPR 2019;
[4] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[5] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

- To improve both:

Hou et al.[5], EEIL[2]......

DNN
classifier

Feature 
extractor

FC classifier



Methods



Learning without Forgetting (LwF)

Reference
[1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017.

all 
images

old classes’ 
ground truth

new class’ 
ground truth

new class 
images

previous 
model’s response 

for old classes 

new class’ 
ground truth



Learning without Forgetting (LwF)

Reference
[1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
[2] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv 2015.

Idea: discouraging the old classes output to change [1]

Proposed by Hilton et al.[2] for ensemble modeling

Classification

Distillation

Full objective

Knowledge distillation



Learning without Forgetting (LwF)

Reference
[1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017.

Summary

+ Distillation loss -> improve the learning of feature extractor
+ Don’t need to retain data for old classes

- Using a simple way to deal with the FC classifier without solving the 
bias problem

* This method is proposed for multi-task setting. However, it is usually used as a 
baseline of multi-class incremental learning papers



iCaRL: Incremental Classifier and Representation Learning

Reference
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.

Feature 
extractor

classifier

Idea: FC classifier -> nearest-mean-of-exemplars (NME) *NME is used only in test phase 



iCaRL: Incremental Classifier and Representation Learning

Reference
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017. (Images from Ramon Morros)



iCaRL: Incremental Classifier and Representation Learning

Reference
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.

Summary

+ Solving the bias problem for the classifier

- Need to retain parts of old data
- Non-parametric classifier may fail in some novel similar classes
- Training and testing using different types of classifier (train: fc, test: NME)



End-to-end Incremental Learning (EEIL)

Reference
[1] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018.

Data 
augmentation



End-to-end Incremental Learning (EEIL)

Reference
[1] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018.

Summary

+ End-to-end, improvement on both feature extractor and classifier
+ A series of data augmentation techniques

- Improvements may come from tricks



Large Scale Incremental Learning (BiC)

Reference
[1] Wu, Yue, et al. "Large scale incremental learning."  CVPR 2019.

BiC: Bias CorrectionProblem: bias on novel classer



Large Scale Incremental Learning (BiC)

Reference
[1] Wu, Yue, et al. "Large scale incremental learning."  CVPR 2019.

Summary

+ Solve the bias problem on classifier

- The correction function works only on large scale datasets



Learning a Unified Classifier Incrementally via Rebalancing (Hou et al.)

Reference
[1] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

FC classifier

Cosine normalization

Improve classifier

Cosine distance



Learning a Unified Classifier Incrementally via Rebalancing (Hou et al.)

Reference
[1] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

Distillation loss

Cosine distance of feature

Improve feature extractor

Less-forget constraint



Learning a Unified Classifier Incrementally via Rebalancing (Hou et al.)

Reference
[1] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

Add margin threshold to top-K classes

Improve classifier

Inter-class separation



Learning a Unified Classifier Incrementally via Rebalancing (Hou et al.)

Reference
[1] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

Summary

+ Improvement on both classifier (cosine distance, inter-class 
separation) and feature extractor (less-forgot constraint)

- The first group requires more classes than other groups 
   (require a good initialization for the CONV networks)
- Extremely slow with inter-class separation strategy  



Comparison
LwF[1] iCaRL[2] EEIF[3] BiC[4] Hou et al.[5]

Feature 
Extractor

Distillation 
Loss

Distillation Loss Distillation Loss Distillation Loss Less-Forget 
Constraint

Exemplar
Exemplar,
Balanced 

Fine-tuning
Exemplar Exemplar,

Classifier FC 
NME FC

FC, 
Bias 

Correction

FC,
Cosine 

Normalization, 
Inter-Class 
Separation

Reference
[1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
[2] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[3] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018;
[4] Wu, Yue, et al. "Large scale incremental learning."  CVPR 2019;
[5] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.



Experiments



Datasets: CIFAR100, ImageNet-Sub (100 classes subset), ImageNet

Datasets and Benchmark

E.g. CIFAR-100

Number of class groups

50 classes 50 classes

10 10 10 10 10 10 10 10 10 10

2 groups

10 groups



Experiments on CIFAR-100

20 groups 10 groups 5 groups 2 groups



Experiments on ImageNet

10 groups



Confusion Matrices

iCaRL LwF fixed representation fine-tuning



Takeaways

Important techniques: 
1. Distillation Loss -> retain knowledge for old classes
2. Nearest-Mean-of-Exemplar Classifier -> no-bias classifier

Future work:
1. Other strategy for retaining knowledge for old classes
2. Shareable parametric classifier -> meta-learning?



Thanks!
Any questions?

liuyaoyao@tju.edu.cn


