Multi-Class Incremental Learning

Yaoyao Liu liuyaoyao@tju.edu.cn

Outline

- Background
- Methods
- Experiments
- Takeaways

Background

Motivation

Thousands of new users and items everyday

Update the model with incremental data

Limited memory

Taking too long time to retrain the model

(Images from Internet)

Incremental learning (also lifelong learning, continual learning)

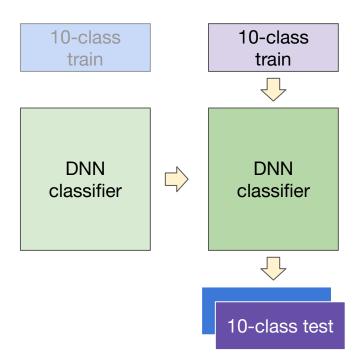
10-class train

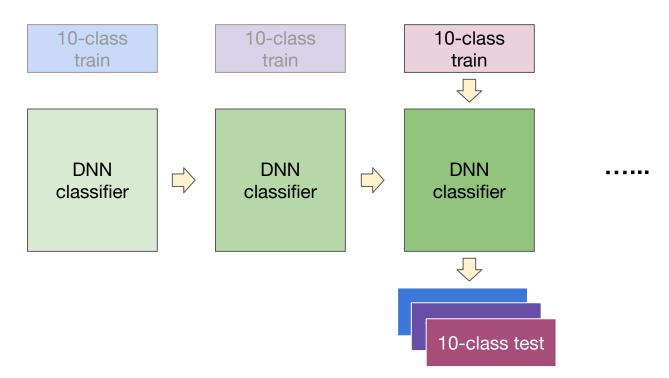
10-class train

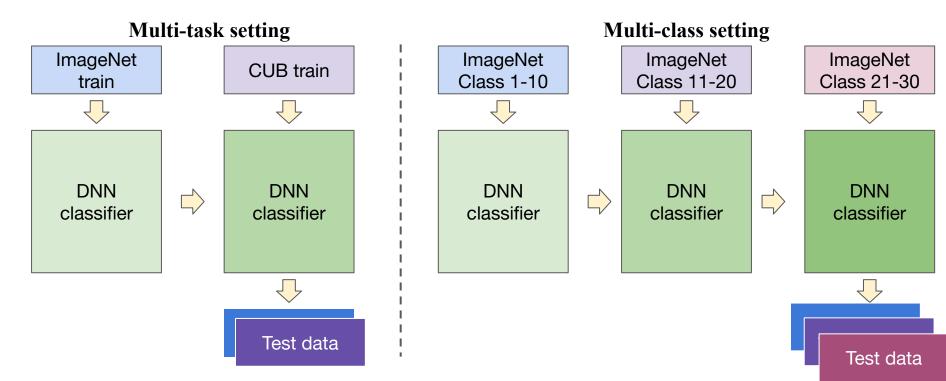
DNN classifier

10-class test

10-class test





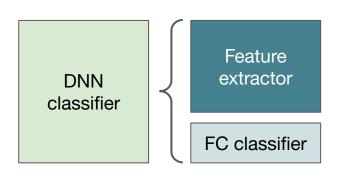


Incremental learning (also lifelong learning, continual learning) This talk Multi-class setting **Multi-task setting** ImageNet ImageNet ImageNet ImageNet CUB train Class 1-10 Class 11-20 Class 21-30 train DNN DNN DNN DNN DNN classifier classifier classifier classifier classifier Test data Test data

Related Learning Methods

	Transfer learning	Multi-task learning	Multi-task incremental learning	Multi-class incremental learning
Target task(s)	Single	Multiple	Multiple	Single
Source task(s)	Multiple	Multiple	Multiple	Single
Data arrival	Constantly / Once	Once	Constantly	Constantly

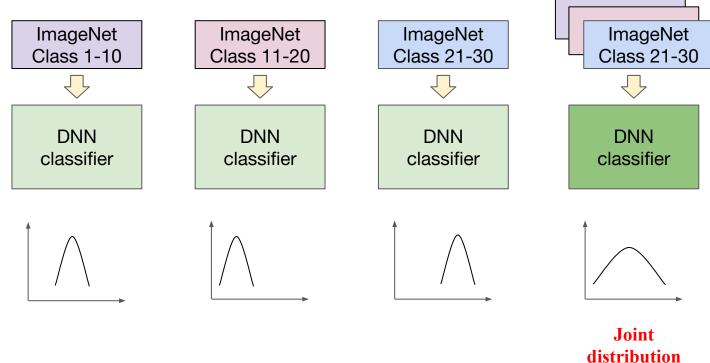
Challenges



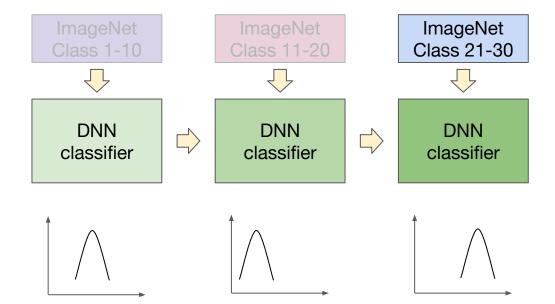
- Catastrophic Forgetting
 Model bias on the latest class group
- 2. FC classifier is not extendable 10 classes -> 20 classes
- 3. Memory resources may be limited
 Not able to retain all previous samples

Catastrophic Forgetting

Distribution of DNN parameters



Catastrophic Forgetting



Distribution of DNN parameters

Overfit to the latest class group

Literature Review

To improve the feature extractor

```
LwF[1], .....
```

- To improve the classifier:

- To improve both:

Hou et al.[5], EEIL[2]......

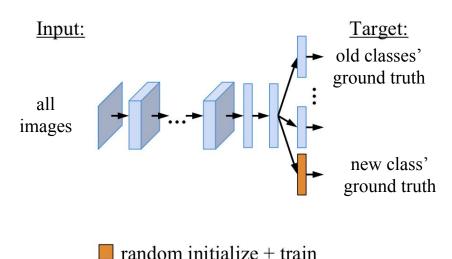
DNN classifier Feature extractor FC classifier

- [1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
- [2] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018;
- [3] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019;
- [4] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [5] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

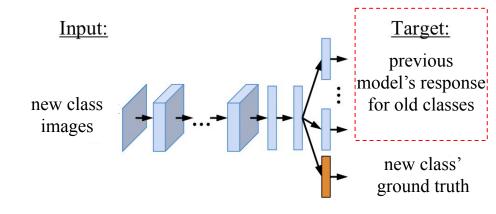
Methods

Learning without Forgetting (LwF)

Joint Training



Learning without Forgetting



Reference

fine-tune

Learning without Forgetting (LwF)

Idea: discouraging the old classes output to change [1]

Knowledge distillation

Proposed by Hilton et al.[2] for ensemble modeling

$$\begin{array}{ll} \textit{Classification} & \mathcal{L}_{\mathrm{new}}(\mathbf{y}_n, \hat{\mathbf{y}}_n) = -\mathbf{y}_n \mathrm{log} \hat{\mathbf{y}}_n & \text{In which,} \\ \\ \textit{Distillation} & \mathcal{L}_{\mathrm{old}}(\mathbf{y}_o, \hat{\mathbf{y}}_o) = -\mathbf{y}_o \mathrm{log} \hat{\mathbf{y}}_o & \mathbf{y}_o = \Phi_{\mathrm{old}}(x) \\ \\ \textit{Full objective} & \mathcal{L} = \mathcal{L}_{\mathrm{old}} + \mathcal{L}_{\mathrm{new}} & [\hat{\mathbf{y}}_o, \hat{\mathbf{y}}_n] = \Phi_{\mathrm{current}}(x) \\ \end{array}$$

- [1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
- [2] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv 2015.

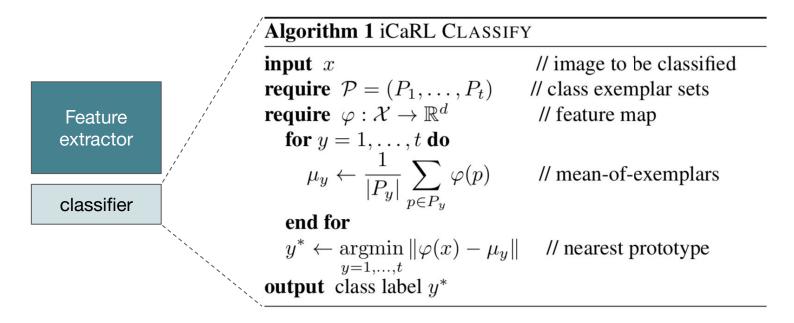
Learning without Forgetting (LwF)

Summary

- + Distillation loss -> improve the learning of feature extractor
- + Don't need to retain data for old classes
- Using a simple way to deal with the FC classifier without solving the bias problem

^{*} This method is proposed for multi-task setting. However, it is usually used as a baseline of multi-class incremental learning papers

iCaRL: Incremental Classifier and Representation Learning

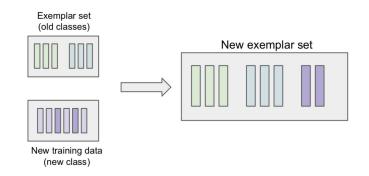


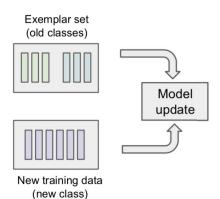
Idea: FC classifier -> nearest-mean-of-exemplars (NME) *NME is used only in test phase

iCaRL: Incremental Classifier and Representation Learning

Algorithm 4 iCaRL CONSTRUCTEXEMPLARSET

input image set $X = \{x_1, \dots, x_n\}$ of class y input m target number of exemplars require current feature function $\varphi: \mathcal{X} \to \mathbb{R}^d$ $\mu \leftarrow \frac{1}{n} \sum_{x \in X} \varphi(x) \text{ // current class mean}$ for $k = 1, \dots, m$ do $p_k \leftarrow \operatorname*{argmin}_{x \in X} \left\| \mu - \frac{1}{k} [\varphi(x) + \sum_{j=1}^{k-1} \varphi(p_j)] \right\|$ end for $P \leftarrow (p_1, \dots, p_m)$ output exemplar set P





Reference

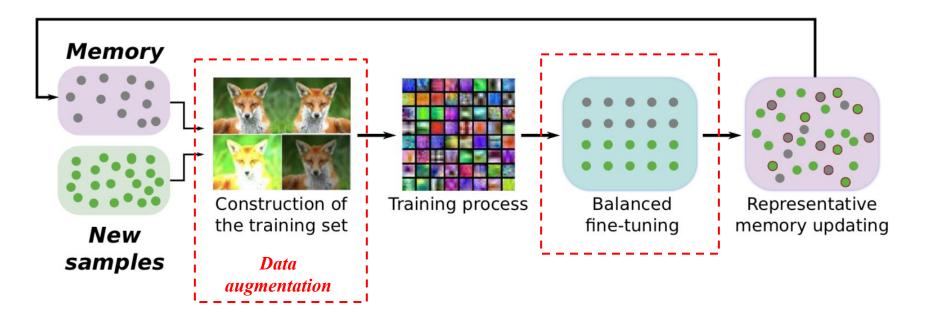
(Images from Ramon Morros)

iCaRL: Incremental Classifier and Representation Learning

Summary

- + Solving the bias problem for the classifier
- Need to retain parts of old data
- Non-parametric classifier may fail in some novel similar classes
- Training and testing using different types of classifier (train: fc, test: NME)

End-to-end Incremental Learning (EEIL)



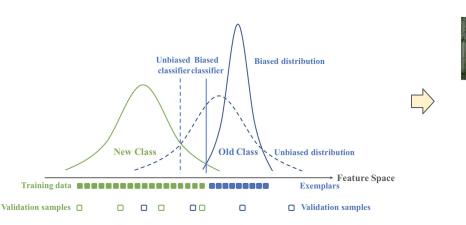
End-to-end Incremental Learning (EEIL)

Summary

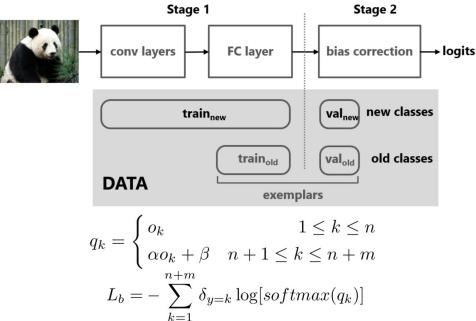
- + End-to-end, improvement on both feature extractor and classifier
- + A series of data augmentation techniques
- Improvements may come from tricks

Large Scale Incremental Learning (BiC)

Problem: bias on novel classer



BiC: Bias Correction



Reference

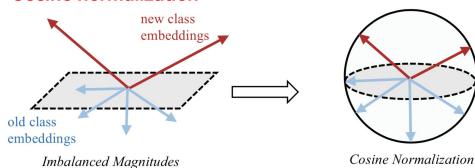
[1] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019.

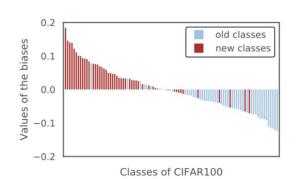
Large Scale Incremental Learning (BiC)

Summary

- + Solve the bias problem on classifier
- The correction function works only on large scale datasets

Cosine normalization





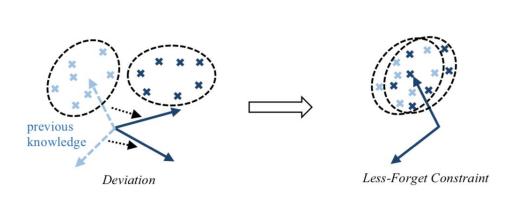
FC classifier

$$p_i(x) = \frac{\exp(\theta_i^{\mathrm{T}} f(x) + b_i)}{\sum_j \exp(\theta_j^{\mathrm{T}} f(x) + b_j)}$$

$$p_i(x) = \frac{\underset{\exp(\eta \langle \theta_i, f(x) \rangle)}{\text{Cosine distance}}}{\sum_j \exp(\eta \langle \bar{\theta}_j, \bar{f}(x) \rangle)}$$

Improve classifier

Less-forget constraint



Distillation loss

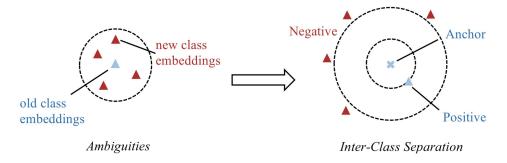
$$L_{\mathrm{dis}}^{\mathrm{C}}(x) = -\sum_{i=1}^{|\mathcal{C}_{\mathrm{o}}|} \|\langle \bar{\theta}_{i}, \bar{f}(x) \rangle - \langle \bar{\theta}_{i}^{*}, \bar{f}^{*}(x) \rangle \|$$

Cosine distance of feature

$$L_{\mathrm{dis}}^{\mathrm{G}}(x) = 1 - \langle \bar{f}^*(x), \bar{f}(x) \rangle$$

Improve feature extractor

Inter-class separation



Add margin threshold to top-K classes

$$L_{\rm mr}(x) = \sum_{k=1}^{K} \max(m - \langle \bar{\theta}(x), \bar{f}(x) \rangle + \langle \bar{\theta}^k, \bar{f}(x) \rangle, 0)$$

Improve classifier

Summary

- + Improvement on both classifier (cosine distance, inter-class separation) and feature extractor (less-forgot constraint)
- The first group requires more classes than other groups (require a good initialization for the CONV networks)
- Extremely slow with inter-class separation strategy

Comparison

	LwF[1]	iCaRL[2]	EEIF[3]	BiC[4]	Hou et al.[5]
Feature Extractor Classifier	Distillation Loss FC	Distillation Loss	Distillation Loss	Distillation Loss	Less-Forget Constraint
		Exemplar	Exemplar, Balanced Fine-tuning	Exemplar	Exemplar,
		NME	FC	FC, Bias Correction	FC, Cosine Normalization, Inter-Class Separation

- [1] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." T-PAMI 2017;
- [2] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
- [3] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018;
- [4] Wu, Yue, et al. "Large scale incremental learning." CVPR 2019;
- [5] Hou, Saihui, et al. "Learning a Unified Classifier Incrementally via Rebalancing." CVPR 2019.

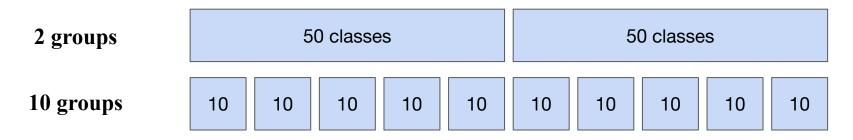
Experiments

Datasets and Benchmark

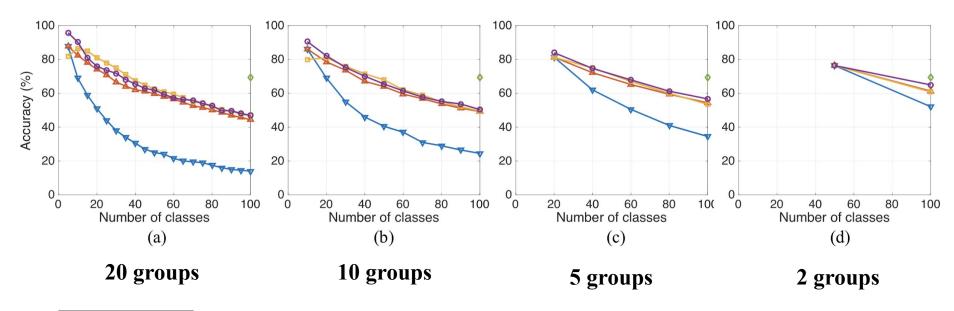
Datasets: CIFAR100, ImageNet-Sub (100 classes subset), ImageNet

E.g. CIFAR-100

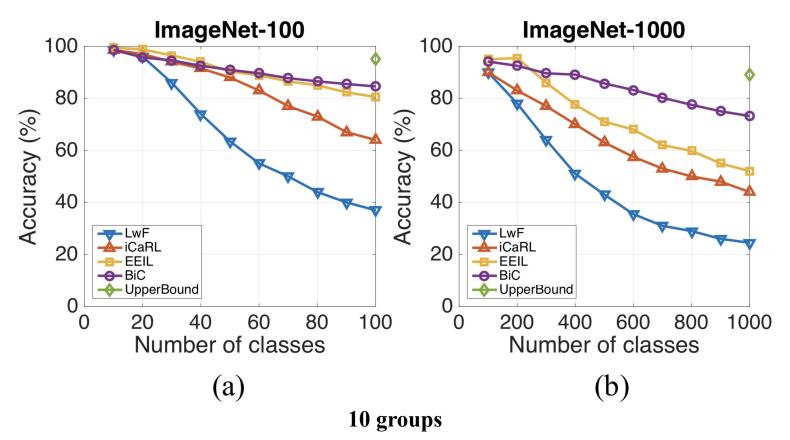
Number of class groups



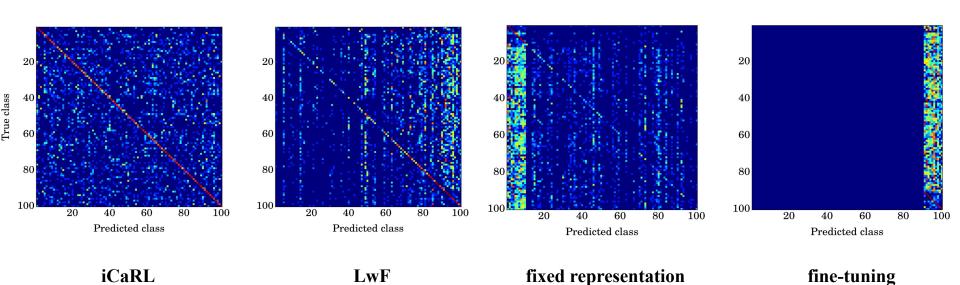
Experiments on CIFAR-100



Experiments on ImageNet



Confusion Matrices



Takeaways

Important techniques:

- 1. Distillation Loss -> retain knowledge for old classes
- 2. Nearest-Mean-of-Exemplar Classifier -> no-bias classifier

Future work:

- 1. Other strategy for retaining knowledge for old classes
- 2. Shareable parametric classifier -> meta-learning?

Thanks! Any questions?

liuyaoyao@tju.edu.cn