

NUS-Tsinghua-Southampton Centre for Extreme Search

Meta-transfer Learning for Few-shot Learning

Yaoyao Liu

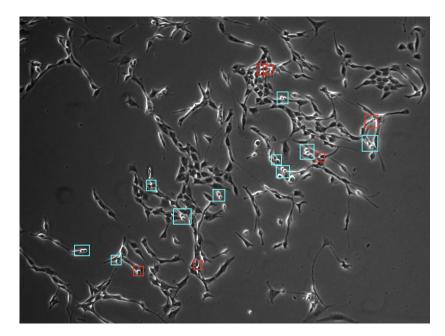
Tianjin University and NUS School of Computing

OUTLINE

- Research Background
- Methods
 - Meta-transfer Learning
 - Hard-task Meta Batch
- Experiments and Conclusions

- Deep learning achieved a lot of success in many fields: Computer Vision, NLP...
- Limitation: most algorithms are based on *supervised learning*, so we need lots of *labeled samples* to train the model

 Limitation: most algorithms are based on *supervised learning*, so we need lots of *labeled samples* to train the model



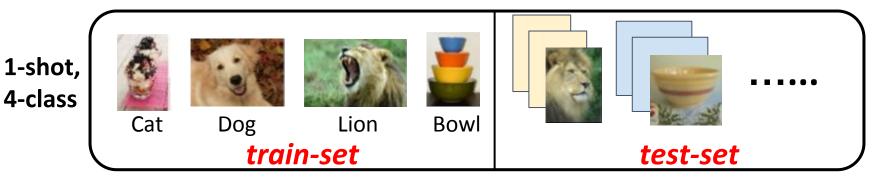
medical images

mitosis 有丝分裂

• How to learn a model with limited labeled data?

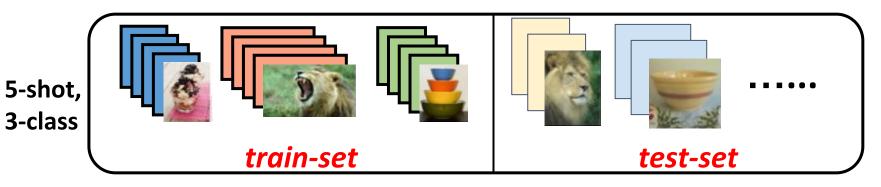
Task: Few-shot Learning Our focus: few-shot image classification

Using only *a few labeled samples* to train the classifier



Shot number: how many samples for one class Class number: how many classes in the small dataset

Using only *a few labeled samples* to train the classifier



Literature Review

 Meta learning based: Meta-LSTM^[1], MAML^[2], ... Design learnable components

- **2.** *Metric learning based: Design distance-based objective functions* MatchingNets^[3], ProtoNets^[4], ...
- **3.** Others (based on augmentation, domain adaptation...): Data Augmentation GAN^[5], CCN+^[6]...

^[1] Ravi et al. "Optimization as a model for few-shot learning." ICLR 2016;

^[2] Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;

^[3] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;

^[4] Snell et al. "Prototypical networks for few-shot learning." NIPS 2017;

^[5] Antoniou et al. "Data augmentation generative adversarial networks." In ICLR Workshops 2018;

^[6] Hsu et al. "Learning to cluster in order to transfer across domains and tasks." ICLR 2018.

Literature Review

1. Meta learning based: Meta-LSTM^[1], MAML^[2], ...

This talk

- Metric learning based:
 MatchingNets^[3], ProtoNets^[4], ...
- **3.** Others (based on augmentation, domain adaptation...): Data Augmentation GAN^[5], CCN+^[6]...

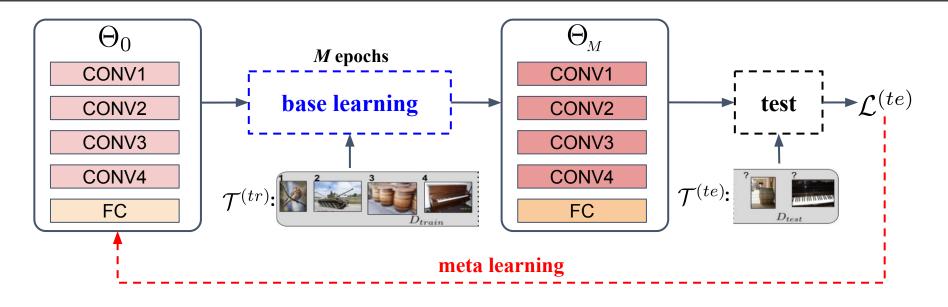
- [2] Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;
- [3] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;
- [4] Snell et al. "Prototypical networks for few-shot learning." NIPS 2017;
- [5] Antoniou et al. "Data augmentation generative adversarial networks." In ICLR Workshops 2018;
- [6] Hsu et al. "Learning to cluster in order to transfer across domains and tasks." ICLR 2018.

^[1] Ravi et al. "Optimization as a model for few-shot learning." ICLR 2016;

OUTLINE

- Research Background
- Methods
 - Meta-transfer Learning
 - Hard-task Meta Batch
- Experiments and Conclusions

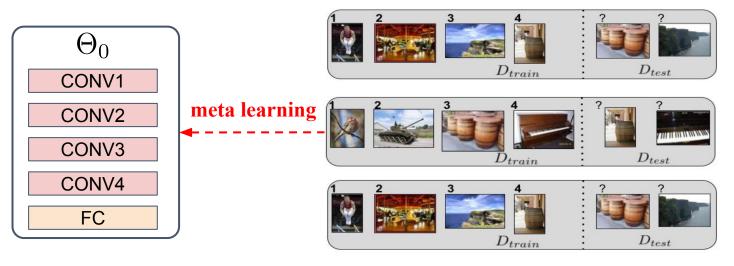
Classic Algorithm: *MAML*



meta-train phase

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

Classic Algorithm: *MAML*

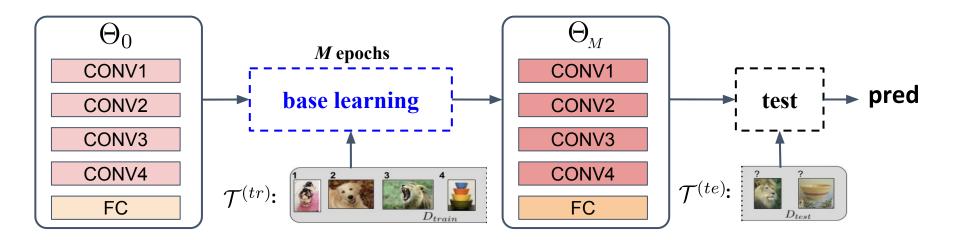


.....

Learn initialization weights for different tasks using meta-learning.

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

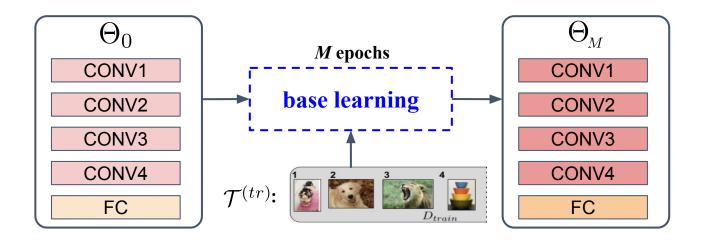
Classic Algorithm: *MAML*



meta-test phase

Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

- Failure on deeper networks



- Failure on deeper networks

- Slow convergence speed

For the networks with only 4 conv layers, MAML trains *60k* iterations. It takes more than *30 hours* on a NVIDIA V100 GPU.

Our Methods

- Failure on deeper networks \implies *Meta-transfer Learning*

- Slow convergence speed

Hard Task Meta Batch

-

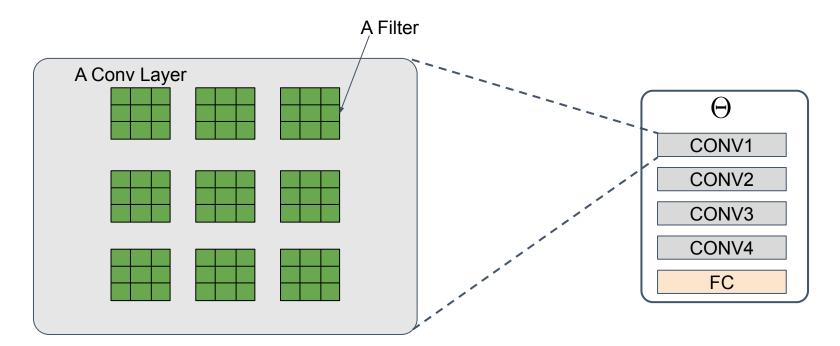
Overview of the Methods

Meta-transfer Learning

Explore the structure of the classifier Θ , control the degree of freedom

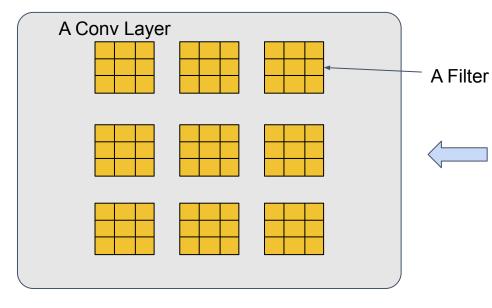
- Hard Task Meta Batch

Convolution Networks in MAML



learnable

Learn the Structure by Many-shot Classification



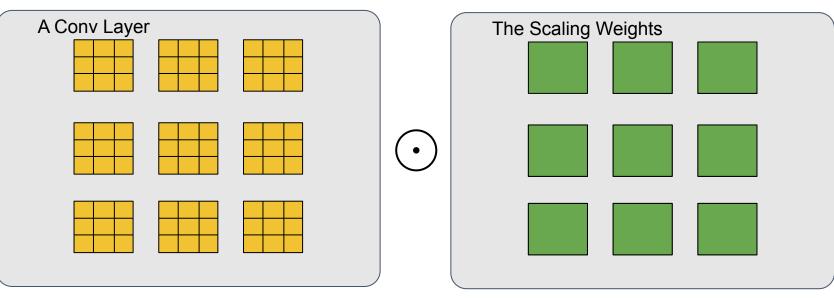
fixed

Pre-trained the network with many-shot classification task

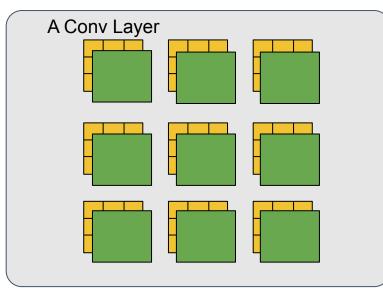
Meta-transfer Learning

structure

the degree of freedom



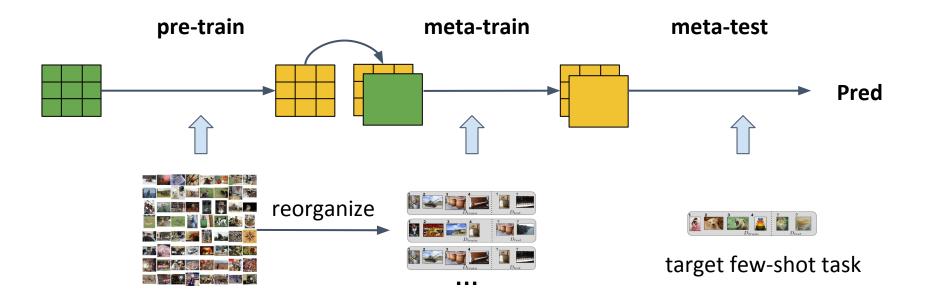
Meta-transfer Learning



Applying the scaling weights for each filter

Parameter number is reduced to approximately 1/9

learnable



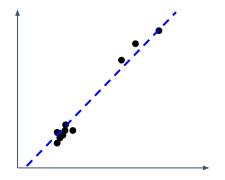
learnable

Overview of the Methods

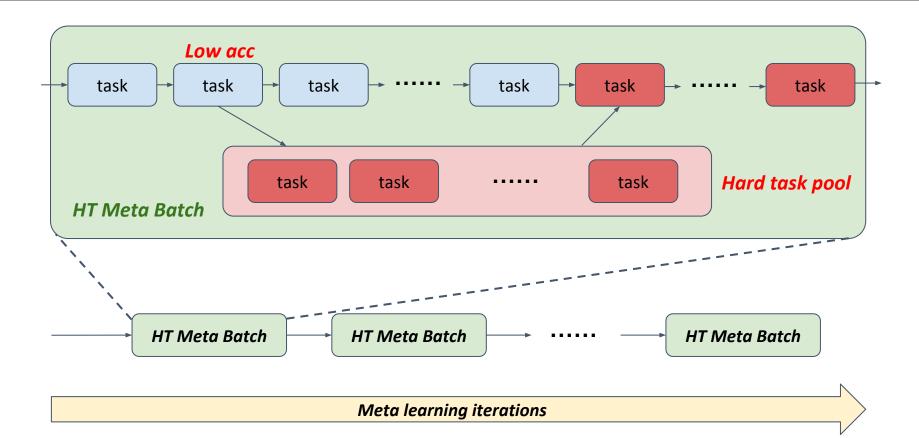
- Meta-transfer Learning

- Hard Task Meta Batch

The idea is from hard example mining^[1] Hard example -> hard task



Hard Task Meta Batch



OUTLINE

- Research Background
- Method
 - Meta-transfer Learning
 - Hard-task Meta Batch
- Experiments and Conclusions

- minilmageNet
 - Reorganized from ImageNet
 - Vinyals et al.^[1] first devised the dataset, and it is widely used in evaluating few-shot learning methods
 - 100 classes (64 meta-train, 16 meta-val, 20 meta-test)
- □ Fewshot-CIFAR100 (FC100)
 - Reorganized from CIFAR100
 - Splitted by Oreshkin et al.^[2]
 - 100 classes (60 meta-train, 20 meta-val 20 meta-test)
 - 20 super-classes (12 meta-train, 4 meta-val 4 meta-test)

- Image Classification Accuracy
- 600 testing tasks randomly sampled from the meta-test set
- 5-class
- 1-shot and 5-shot on *mini*ImageNet
- 1-shot, 5-shot and 10-shot on FC100
- * The same evaluation protocol with MAML^[1]

Image Classification Accuracy

	<i>mini</i> lmageNet (5-class)		FC100 (5-class)		
Methods	1-shot	5-shot	1-shot	5-shot	10-shot
MatchingNets [1]	43.4 ± 0.8 %	55.3 ± 0.7 %			
Meta-LSTM [2]	43.6 ± 0.8 %	60.6 ± 0.7 %			
MAML [3]	48.7 ± 1.8 %	63.1 ± 0.9 %			
ProtoNets [4]	49.4 ± 0.8 %	68.2 ± 0.7 %			
TADAM [5]	58.5 ± 0.3 %	76.7 ± 0.3 %	40.1 ± 0.4 %	56.1 ± 0.4 %	61.6 ± 0.5 %
Ours (MTL + HT)	61.2 ± 1.8 %	75.5 ± 0.8 %	45.8 ± 1.9 %	57.0 ± 1.0 %	63.4 ± 0.8 %

[1] Vinyals et al. "Matching networks for one shot learning." NIPS 2016;

[2] Sachin et al. "Optimization as a model for few-shot learning." ICLR 2017;

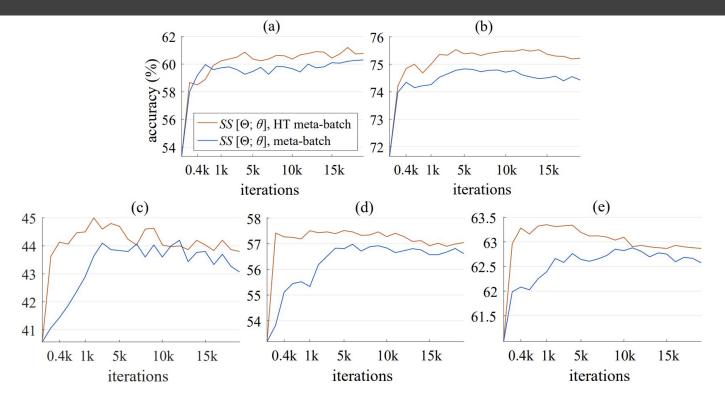
[3] Chelsea et al. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017;

[4] Snell et al. "Prototypical networks for few-shot learning." NIPS 2017;

[5] Oreshkin et al. "TADAM: Task dependent adaptive metric for improved few-shot learning." NIPS 2018.

Ablation Study

	<i>mini</i> lmageNet (5-class)		FC100 (5-class)		
Method	1-shot	5-shot	1-shot	5-shot	10-shot
Train from scratch	45.3	64.6	38.4	52.6	58.6
Finetune on pre-train model	55.9	71.4	41.6	54.9	61.6
Ours (MTL)	60.2	74.3	43.6	55.4	62.4
Ours (MTL + HT)	61.2	75.5	45.1	57.6	63.4



(a) (b) minilmagenet, 1-shot and 5-shot (c) (d) (e) FC100, 1-shot, 5-shot, and 10-shot

- A novel MTL method that learns to transfer large-scale pre-trained DNN weights for solving few-shot learning tasks.
- A novel *HT meta-batch* learning strategy that forces meta-transfer to "grow faster and stronger through hardship".
- Extensive experiments on *miniImageNet* and *FC100*, and achieving the state-of-the-art performance.

This work: Meta-transfer Learning for Few-shot Learning. In *CVPR 2019.* arXiv preprint: <u>https://arxiv.org/pdf/1812.02391.pdf</u> GitHub repo: <u>https://github.com/y2l/meta-transfer-learning-tensorflow</u>

NUS-Tsinghua-Southampton Centre for Extreme Search

Thank you! Any questions?

Email: yaoyao.liu@u.nus.edu